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Abstract We discuss fundamental formation and agreement problems for autonomous, 
synchronous robots with limited visibility. Each robots is a mobile processor that, at each 
discrete time instant, observes the relative positions of those robots that are within distance 
V of itself, computes its new position using the given algorithm, and then moves to that 
position. The main difference between this work and many of the previous ones is that, 

F^^ here, the visibility of the robots is assumed to be limited to within distance V, for some 
■  constant V > 0.  The problems we discuss include the formation of a single point by the 
2_ robots and agreement on a common x-y coordinate system and the initial distribution, and 
^    "^ we present algorithms for these problems, except for the problem of agreement on direction 

(a subproblem of agreement on a coordinate system), which is not solvable even for robots 
<J-*3 with unlimited visibility.  The discussions we present indicate that the correctness proofs 
CVJ of the algorithms for robots with limited visibility can be considerably more complex than 
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those for robots with unlimited visibility. 
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1    Introduction 

Suppose that a large group of soldiers are scattered in a foggy battlefield, where visibility is 
limited to only, say, 20 meters. For instance, a soldier may (faintly) see three other soldiers, 
but he might lose sight of them if he moves even slightly. Under such a circumstance, 

is it possible for the soldiers to gather, silently, at a single location? We answer this and 
related questions using a formal model of distributed autonomous mobile robots with limited 

visibility. 
In recent years, interest in distributed autonomous robot systems has increased consider- 

ably. Leading research activities in the area include the Cellular Robotic System (CEBOT) 
of Fukuda et al. [6] [8].[16], the Swarm Intelligence of Beni et al. [1] [2], the Self-Assembling 
Machine ("fractum") of Murata et al. [10], experimental and theoretical investigations on 
formation and agreement problems for anonymous mobile robots by the authors et al. [12] 

[13] [14] [15], and others [3] [5] [7] [9] [11] [17]. One of the main issues in these works is 
the study of cooperative behavior of autonomous robots that operate under distributed 

control. Distributed control means that each robot makes its own decisions using the given 
algorithm based on the available information. No global controller is assumed to exist. 

In this paper, we continue the authors' previous works on formation and agreement 
problems for anonymous mobile robots [12] [13] [14] [15]. The goal of a formation problem 
is to let the robots form, in finite steps, a given geometric figure or distribution, starting 
from an arbitrary initial distribution, using distributed control in which each robot has 
to make its own decision in each step based on the behavior of other robots that it has 
observed. Heuristic algorithms for forming an approximation of a circle, a line segment, 
and a simple polygon have been proposed in [12] [15]. Formal discussions on the power and 
limitation of the distributed method for formation problems can be found in [13] [14]. 

In an agreement problem, on the other hand, the robots are required to reach, in finite 
steps, a state in which they all have a common understanding of the given concept, such 
as a location at which they gather, direction in which they move, and distance over which 
they move. Leader election can also be considered as an agreement problem. The problem 
of agreeing on a common x-y coordinate system, which is perhaps the most fundamental 
agreement problem when initially the robots do not have a common coordinate system, is 

discussed in [13] [14]. 
In many of the works mentioned above, including the authors' previous works, it is 

assumed that the sensor range of a robot is unlimited, that is, a robot is capable of seeing 
other robots regardless of the distance to them. (Exceptions include the works that discuss 
collision avoidance strategies that use only local information.) In this paper, we assume 
that each robot has only limited visibility, in the sense that it can see and know the relative 
positions of only those robots that are within distance V of itself, for some constant V > 0. 
V therefore represents the visibility range of the robots. Under this assumption, we discuss 
fundamental formation and agreement problems, namely, the formation of a single point by 
the robots, agreement on a common x-y coordinate system (i.e., agreement on the origin, 
unit distance, and direction of the positive z-axis), and discovery of and agreement on the 

initial distribution. The goal of the single point formation problem is to move the robots 
to a single point in finite steps. And, as we stated above, agreement means that the robots 
must obtain a common understanding of the given concept in finite steps. We present 
algorithm for solving these problems, except for the problem of agreement on direction (a 



subproblem of agreement on a coordinate system), which is not solvable even for robots 

with unlimited visibility. 
In fact, a close relationship exists between formation problems and the problem of 

agreeing on a common x-y coordinate system. The problem of agreeing on the origin, 
which is reducible to the problem of agreeing on a point, is further reducible to the problem 
of forming a point. The problem of agreeing both on the origin and on unit distance is 
reducible to the problem of forming a circle. Also, the problem of agreeing on direction is 
reducible to the problem of forming a line segment. This observation partly motivates the 

study of the single point formation problem. (See [13] [14] for more details.) 
The algorithm we present for the single point formation problem is "oblivious", in the 

sense that the position of a robot at the next time instant is determined based only on the 
positions of those robots that are currently visible, and independently of the past robot 
behavior. Hence, the algorithm can easily be implemented, since there is no need to store 

and process the history of robot moves. 
More importantly, since real sensors and controllers are not always accurate enough, 

practical algorithms must take into account the effects of sensor and control errors, and 
tolerate them. The fact that our algorithm is oblivious and works correctly starting from 
any initial distribution (as is proved later), implies that the algorithm is extremely robust 
against sensor and control errors of the robots, in the following sense: The algorithm works 
correctly even in the presence of a finite number of (i.e., transient) such errors, since the 
robot distribution immediately after the occurrence of the last error can be viewed as a new 
initial distribution. The algorithm for agreement on a common x-y coordinate system is 
also oblivious, but the one for discovering and agreeing on the initial distribution is not. 

It turns out that algorithms for robots with limited visibility can be considerably more 
complex than those for robots with unlimited visibility that solve the same problem. Sim- 

ilarly, proving the correctness of such algorithms for robots with limited visibility can be 
much more involved compared with the proofs for the case of unlimited visibility. This is 
mainly due to the fact that, under limited visibility, the behavior of a robot is based only 
on local information available to that robot, whereas the correctness of the algorithm can 
only be derived from the global behavior of the entire set of robots. 

The model of the robot system we use is basically the same as that given in [13] [14], 
except that the robots have only limited visibility. Namely, each robots is a mobile processor 
that repeatedly does the following: Observe the relative positions of those robots that are 
within distance V of itself, compute its next position using the given algorithm, and then 
move to that position. The algorithm can use, as input, the positions of other robots 
observed by the robot in the past. We assume the following: (1) Initially, the robots do 
not have a common x-y coordinate system. (2) Initially, the robots do not have a sense of 
direction. (3) The robots are indistinguishable by their appearances. (4) All robots execute 

the same algorithm for determining their movement. 
In this paper, we only consider the case when the robots are synchronous, that is, they 

always observe other robots and move simultaneously at discrete time instants 0, 1, 2, — 
It has been reported in [13] [14] that certain formation and agreement problems can be 
extremely hard (or even unsolvable) if the robots are not guaranteed to be synchronous. 

The case of asynchronous robots is left for future research. 
Taking into consideration collision avoidance of robots with volume is of course impor- 

tant, but for simplicity, in this paper we represent a robot as a point, and assume that two 



or more robots can occupy the same position simultaneously and the robots do not block 
the views of others. 

We introduce the problem of forming a single point by the robots in Section 2, and 

present an algorithm for solving it in Section 3. The correctness of the algorithm is shown 
in Section 4. Section 5 discusses agreement problems. Concluding remarks are found in 
Section 6. 

2    The Single Point Formation Problem 

Let R = {ri,.. .rn} be the set of robots. We denote by r,-(i) the position of robot rt- (in 
the 2-dimensional Euclidean space) immediately before the move at time instant t. r,-(i) 

is called the position of r,- at t. The multiset P(t) - {n(t),.. .,rn(t)} then denotes the 
distribution of the robots at t. (P(t) is a multiset, since it is possible that r,-(t) = Tj(t) for 
some i ^ j.) So P(0) denotes the initial positions of the robots. Given P(t), define a graph 
Gt = (R,Et), called the visibility graph at time t, by (r,-,ry) £ Et <-> dist(ri(t),rj(t)) < V, 
where dist(p, q) denotes the Euclidean distance between points p and q. That is, there 
exists an edge between rt- and rj in Gt if and only if r,- and rj are mutually visible at t. See 
Figure 1. 

For convenience, we introduce the following notation. Si(t) denotes the set of robots 
that are visible from r,- at t, that is, Si(t) = {rj\dist(ri(t),rj(t)) < V} C R. Note that 

Ti £ Si(t). We denote by d(t) the smallest enclosing circle of the set {rj(i)\rj € &(*)} 0I" 

the positions of the robots in 5,-(i) at t, and c,-(f) its center. Clearly, for any set S of points, 
the smallest enclosing circle of S is unique and is effectively computable [4]. The following 
property is well known [4]. The proof is omitted. 

Proposition 1 Let C be the smallest enclosing circle of a set S of points.  Then either 

1. there are two points p, q in S on the circumference of C such that the line segment 
pq is a diameter of C, or 

2. there are three robots p, q, r in S on the circumference of C such that the center c of 
C is inside Apqr. 

The single point formation problem is the problem of moving the robots in the same 
connected component of Go to a single point in finite steps, where Go is the visibility graph 
at time 0. Our goal is to design an algorithm for the robots that achieves this, regardless of 
the initial distribution P(0). (The single point convergence problem discussed in [13] [14] 
only requires that the robots converge to a single point. The process of convergence need 
not terminate in finite steps.) 

Note that two robots that belong to different connected components of GQ need not 
move to the same point. In fact, under limited visibility, there is no deterministic algorithm 
for moving all robots to a single point. To see this, suppose that there are only two robots 
ri and T2, such that (1) the local coordinate system of r\ is obtained from that of r-i by a 
translation of distance d, for some d > V, and (2) initially, T\ and r2 are at the origin of their 
respective local coordinate systems. Then initially, neither r\ nor r<i sees any other robot, 
and the situation looks identical to both. So if the algorithm they use is deterministic, they 

move (simultaneously) in the same manner using their respective local coordinate systems. 



Figure 1: Hollow circles are the initial positions of 100 robots. Visibility graph G0 consists 
of these circles and the edges among them. Solid circles are their final positions after the 
execution of the algorithm for the single point formation problem given in Section 3. Small 
dots represent their intermediate positions. 



Figure 2: Direction of r,-'s move. 

This means, by the assumption on their coordinate systems, that the robots are again 
distance d apart and the situation looks identical to both. This argument continues, and 
thus the robots can never converge to a single point. 

3    Algorithm 

We present an algorithm for solving the single point formation problem. Intuitively, the 
algorithm solves the problem by achieving the following two subgoals at every time instant 
t: (1) The robots in the same connected component of Gt "get closer" in some sense at 
* + 1, and (2) robots that are mutually visible at t remain mutually visible at t + 1. 

First of all, at every time instant t, if r,- does not see any robot other than itself (i.e., 
Si(t) = {r,-}), then r,- does not move at t. Otherwise (i.e., S,-(<) D {?",•}), to achieve the first 
subgoal, we move r,- towards the center of the smallest enclosing circle of the positions of 
all the robots that r,- can see. Formally, at t, r,- moves towards the center c,-(i) of C,(i), over 
some distance MOVE to be specified below. See Figure 2. 

If Ti moves at t as mentioned above, then we achieve the second subgoal as follows. Let 
rj, i ^ j, be one of the robots in S{(t), that is, TJ is visible from r; at t. Let rrij be the 
midpoint of r,(i) and rj(t). As is shown in Figure 3, if the next positions of r,- and rj are 
both inside the disc Dj with center rrij and radius V/2, then r,- and rj can still see each other 
at t + 1. Formally, given the direction of the move (towards c;(i), as explained above), r,- 
computes the maximum distance tj that it can move in that direction without leaving Dj, as 
follows. If dist(ri(t),rj(t)) = 0, then clearly tj - V/2. Otherwise, let dj = dist(ri(t),rj(t)) 
be the distance between r,- and rj at t, and 6j = Zcj(t)r-,-(i)r-j(t) the direction of the move 
of T{ with respect to the ray from r,- to rj, where 0 < dj < ir. See Figure 4. Then 

tj = (dj/2) cos6j + yJ(V/2)2-{{dj/2)smej)2 



Figure 3: Robots rt- and rj remain mutually visible. 
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Figure 4: The maximum distance ij that r; can move towards c,(f) without leaving Dj 



Robot Ti computes this ij for each rj G S;(i), and then finds 

LIMIT =       min      {lj} 
Ti&Si{t)-{ny 

as well as 
GOAL = dist(rt(t),Ci(t)), 

which is the distance from r,- to a(t) at i. Finally, r; moves over distance 

MOVE = min{GOAL, LIMIT} 

towards a(t). By the definition of LIMIT, r{ remains inside the disc Dj for every TJ G S 
after the move. Since all robots compute their next positions using the same algorithm, any 
pair of robots that are mutually visible at t remain mutually visible at t + 1. 

4    Correctness 

In this section, we prove that the algorithm given in Section 3 solves the single point 
formation problem. First, Lemma 1 states formally that robots that are mutually visible 
remain mutually visible during the execution of the algorithm. 

Lemma 1 For any two robots rit rj and any time instant t > 0, (ri,rj) G Et -*• (r^r,-) G 

Et+i- 

Proof The lemma follows from the definition of LIMIT and the explanation given in the 
previous section.    □ 

By Lemma 1, for any time instant t > 0, the robots in a connected component of Gt 

belong to the same connected component of Gt+\. Also, since there are only a finite number 
of robots, the number of times that different connected components merge is finite. Thus 
in the following, let i0 be the smallest time instant such that no two connected components 
merge after tQ. Fix a connected component (S, A) of Gto, and for each t > t0, let CH(t) be 
the convex hull of the positions of the robots in S at t, that is, CH(t) is the convex hull of 
the set of points {rj(t)\rj G S}. 

Lemma 2 states that the diameter of CH(t) never increases, and Lemma 3 states that 
once the robots in a connected component gets sufficiently close to each other, then they 
move to the same position in one step. 

Lemma 2 For any t > t0, CH(t + 1) C CH[t). 

Proof Fix a robot r,- G 5. By the definition of d(t) and Proposition 1, the center a(t) 
of d(t) is in the convex hull of the positions of the robots in 5;(i) at t. Since the current 
position ri(t) of r; is also in the same convex hull, so is the next position r,-(i + 1) of r,-. But 
this convex hull is contained in CH(t), since £,-(*) C S. So r,-(i + 1) G CHit). Since this is 
true for any robot in S, CH(t + 1) C CH(t) holds,   a 

Lemma 3 If the diameter ofCH(t) is no greater than V, then all the robots in S move to 
the same point at t. 
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Figure 5: Illustration for the proof of Lemma 3. 

Proof Fix a robot r; 6 S. Since the diameter of CH(t) is no greater than V, all the robots 
in S are visible from r; at t (and of course, no other robots are visible from r,-). Thus 
Si(t) = S, and hence the center a(t) of C;(i) towards which r; moves is identical for all 
robots in 5. Now, let r.,- be an arbitrary robot in Si(t). Since both r,- and r, are inside C;(i), 
the midpoint m,j of r,-(i) and rj(t) is within distance V/2 of c,-(<). See Figure 5. So c,-(<) is 
inside the disc Dj with center mj and radius V/2, and hence GOAL < £j, where GOAZ and 
ij are defined in Section 3. Since this is true for any rj e Si(t), we have GOAL < LIMIT 
for n. So MOVE = GOAL = dw<(r,-(t), c,-(f)) for »",•, that is, r,- moves to a(t).   a 

Therefore, what remains to be proved is that the diameter of CH(t) decreases to a 
value that is not greater than V. (Note that Lemma 2 alone does not guarantee this.) Now, 
by Lemma 2, we know at least that the series {CH(t) : t - t0,t0 + 1,...} converges. So 
suppose that it converges to CH, where CH must clearly be a convex polygon, including, 
as special cases, a point and a line segment. We will show in Lemma 5 given below that 
CH is indeed a single point. We need the following technical lemma, Lemma 4, in order to 
prove Lemma 5. 

Lemma 4 Suppose that at t, (1) the robots that are visible from rj are located on the arc or 
the apex of a sector with apex rj(t), apex angle <p and radius V, where 0 < <p < IT, and (2) at 
least one robot that is visible from TJ is located on the arc of this sector. (See Figures 6 and 
7.) Then at t, rj moves over distance at least min{Vr/2,y cos(^/2)} and at most V/y/2. 

Proof Let <p', 0 < <p' < (p, be the smallest angle such that the robots visible from TJ lie 
inside the wedge with apex r,-(i) and apex angle <p'. The lemma follows from the following 
argument. 
Case 1: 0 < <p' < TT/2. 

See Figure 6. In this case, 

10 



Figure 6: The case 0 < y' < TT/2. 

GOAL = (V/2)/ cos(^'/2) 

and 
LIMIT > V/2. 

Then, since MOVE = mm{GOAL, LIMIT} and 

V/2 < {V/2)/ cos(y//2) < V/V2, 

we have 

Case 2: 7r/2 <</?'< 7r. 
See Figure 7. In this case, 

V/2 < MOVE < V/y/2. 

GOAL = LIMIT = Vcos(<p'/2), 

MOVE = Vcos(tp'/2). 

^cos(^/2) < MOVE < V/y/2. 

and hence 

Thus 

D 

Lemma 5 CH is a point. 

Proof First, we assume that CH is a convex polygon other than a single point or a line 
segment, and derive a contradiction. Let a be an arbitrary corner of CH, and <p the 
internal angle at a. Let 6 > 0 be an arbitrary (small) real number. By the assumption of 
convergence, there exists a sufficiently large time instant t\ (> *o) sucn that at any t >tt, 
all the robots in S are in the ^-neighborhood of CH, and there exists at least one robot in 
the ^-neighborhood of a. Let CH' be the convex polygon obtained from CH by translating 

11 



Figure 7: The case 7r/2 < <p' < ir. 

Figure 8: CH and CH'. 
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CH' 

Figure 9: Illustration for Case 1 of the proof of Lemma 5. 

each edge of CH outward over distance 6. See Figure 8. Note that CH' contains the 6- 
neighborhood of CH. Let a' be the corner of CH' corresponding to a. Let Aabc C CH' be 
the smallest isosceles triangle containing the ^-neighborhood of a, such that ab = ac and 
corner a is at a'. Then there exists at least one robot in Aabc at any time instant after ii. 

So we let Ti be a robot that is in Aabc at t + 1, that is, r,-(t + 1) € Aabc, where t > h, 
and examine the position r,-(i) of rt- at i. We use symbols 5,(i), C,-(i) and c,-(t) defined 
previously. By Proposition 1 and the fact that all the robots in S are in CH' at t, the 
center c,-(i) of C,-(i) is in CH'. There are two cases, depending on the relative positions of 

Ci(t) and Aabc. 
Case 1: Cj(i) is inside Aabc. 
See Figure 9. By Proposition 1 and the fact that all the robots in S are in CH' at t, there 
exist two points p,q in CH' such that pq is a diameter of C;(i). This, together with the 
condition that c,-(<) G Aa&c, implies that (1) there exists some e > 0 that depends only on 
£ and CH, such that all the robots in 5,(i) (including r,-(*)) are in the e-neighborhood of a, 

13 
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Figure 10: r;, rj and r^. 

and (2) this e can be made arbitrarily close to 0 by choosing sufficiently small S. So assume 
that € is very small. Then, since the robots in S constitute a connected component of Gt 
and e is much smaller than the distance from a to any other corner of CH, there is at least 
one robot, say r^, that is not visible from r,- at *, but that is visible from some robot, say 
rj visible from r,-. That is, there exist rj S Si(t) and rk G S - Si(t) such that rk G Sj{t). 
See Figure 10. This means that the robots that are visible from rj at t are either within 
distance 2e (« 0) of rj(t), or at distance greater than V - 2e (« V) of rj(t) (and there is 
at least one such robot, called rk above). So the situation is similar to that described in 
Lemma 4, and thus the distance of the movement of rj at t must be almost the same as that 
given in Lemma 4. Thus at t +1, rj is at distance at least about min{y/2, V cos(<^/2)} from 
a, and at distance at most about V/V2 from a, where 8 can be chosen in advance so that 
e is much smaller than min{Vy2, Vcos(</72)}. Thus at t + 1, rj is visible from every robot 
in the e-neighborhood of a. So if 5 (and thus e) is chosen sufficiently small, then a.tt + 1, 
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every robot in the e-neighborhood of a moves out of that region.   So immediately before 
the move at t + 2, there are no robots in the ^-neighborhood of a. This is a contradiction. 
(End of Case 1) 
Case 2: c,-(t) is outside Aabc. 
See Figure 11. Since n(t) <£ Aabc implies n(t+1) £ Aabc contradicting the assumption, we 
have ri(t) £ Aabc. Also, clearly the distance over which r,- moves at t is MOVE = LIMIT, 
where LIMIT is not greater than the length of a longest side of Aabc, which can become 
arbitrarily small if 6 is chosen to be small, for any fixed value of ip. Now, by the defini- 
tion of LIMIT, in order for the value of LIMIT to be small, there must exist a robot 
rj e Si(t) such that dw<(r,-(J),rj(t)) w V and 0, = La(t)ri{t)rj{t) is close to or greater 
than 7r/2. On the other hand, since c,(t) is the center of the smallest enclosing circle of 
Si(t), dist(rj(t),ci(t)) < V holds. Therefore, if S is chosen to be sufficiently small, then 
dist(ri(t),Ci{t)) can become arbitrarily close to 0. So, if the value of 6 is modified to be 
slightly larger (but still sufficiently small) so that c,-(i) is inside (new) Aabc, then the argu- 
ment used in Case 1 can be applied to show that the diameter of C,-(i) must be very small. 
This implies that dist{ri{t),Tj(t)) must be very small, contradicting dist(ri(t),rj(t)) w V. 
(End of Case 2) 

15 



The claim that CH is not a line segment can be shown in a similar way, and we omit 
the details. Therefore, eventually the diameter of CH(t) becomes no greater than V, and 
then by Lemma 3, all the robots in S move to a single point in one step. Thus CH is a 
point.    □ 

By the lemmas given above, we obtain the following theorem. 

Theorem 1  The algorithm solves the single point formation problem correctly. □ 

We remark that the proof of the correctness of the algorithm of Section 3 is much more 
complex than that of an algorithm given in [14] for converging the robots with unlimited 
visibility to a single point. This is due to the fact that, under limited visibility, the behavior 
of a robot is based only on local information available to that robot, whereas the correctness 
of the algorithm can only be derived from the global behavior of the entire set of robots. 

5    Agreement Problems 

In this section, we discuss two basic agreement problems for the robots, namely, agreement 
on a common x-y coordinate system and agreement on the initial distribution. Here, agree- 
ment means that the robots should obtain, in finite steps, a common understanding of the 
given concept. As we discussed in Section 2, however, under limited visibility some robots 
may never belong to the same connected component of Gt for any t during the execution 
of the given algorithm. So we cannot expect all robots to agree on the given concept. So 
in the following, we only require the robots that belong to the same connected component 
of Go to reach an agreement. (Of course, additional robots that happen to be merged into 
a new connected component may also be able to agree.) 

5.1    Agreement on an x-y coordinate system 

Agreement on a common x-y coordinate system means that the robots should obtain, in 
finite steps, a common understanding of the origin, unit distance, and direction of the 
positive z-axis. As is shown in [14], however, agreement on direction is not possible in 
general, even if the robots have unlimited visibility. 

On the other hand, agreement on the origin and unit distance can be achieved using 
the algorithm of Section 3 for forming a point. As we discussed in Section 4, the robots 
that belong to the same connected component of G0 (and possibly some additional robots) 
eventually move to the same point, say p, at some time instant t, in such a way that at 
this moment, they do not see any other robot not located at p. At this moment, the robots 
can agree to use p as the common origin. Next, at t + 1, each robot rt- in S moves to the 
midpoint of p and its previous position r,-(*- 1). Since the distance between p and r,-(i- 1) 
is at most V by the definition of LIMIT, the distance between p and rt-(f + 1) is at most 
V/2, and thus any two robots in S are still mutually visible at t + 1. Then the robots 
can adopt, as the common unit distance, the radius of the smallest enclosing circle of the 
positions of the robots in S at t+ 1. Note that by construction, the size of the unit distance 

is no more than V/2. 
The operation described above works correctly, except when additional robots not in S 

become visible to some robots in S at t + 1. If this happens, then the new set of robots 
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(including the robots in 5) that constitute a new connected component of Gt+\ must repeat 
the entire process, starting with the agreement on the origin. (This is unavoidable in general, 
since there can be more than one connected component in GQ.) TO see if this has happened, 
we let the robots in S execute one step of the algorithm of Section 3 at t +1. If no additional 
robots become visible at t + 1 to any of the robots in 5, then since the diameter of the 
convex hull of the positions of the robots in S at t +1 is not greater than V, by Lemma 3 all 
the robots in S will again move to a single point, say p', at t + 1. (p' is not necessarily the 
same as p.) If on the other hand additional robots become visible at t + 1 to some robots 
in S, then either (1) not all the robots in S move to the same point at t + 1, or (2) all 
robots in S move to the same point at t + 1 and all of them find at t + 2 that the number 

of robots in their connected component has increased. (Note that by Lemma 1, robots 
that are mutually visible remain mutually visible during the execution of the algorithm of 

Section 3.) In either case, the robots in S realize that they have to restart the process for 

agreement on the origin and unit distance. 
The following theorem follows from the discussion given above. We omit the proof. 

Theorem 2 The agreement problem on the origin and unit distance is solvable for syn- 

chronous robots under limited visibility. a 

5.2    Agreement on the initial distribution 

Agreement on the initial distribution requires that the robots in a connected component of 
Go obtain a correct understanding of the initial positions of all the robots in that component. 

This can be solved as follows. 
First, the robots agree on the origin and unit distance, using the method given in the 

previous subsection. Let p be the origin, and d the size of the unit distance, where d < V/2 
by construction. Then all the robots move to p, say at t. At t + 1, each robot r; in S moves 

towards its initial position r,(0), over distance (1 - l/2x)d, where x is the distance from p to 
r;(0) measured in the units of d. Note that since 0 < x < oo, we have 0 < 1 - 1/2* < 1, and 
hence 0 < (1 - l/2x)d < d < V/2. Thus at t + 1, the robots in S are still mutually visible, 
and every robot rt- in S can figure out, for every robot rj in 5, the direction of r\,(0) from p 
and distance to ry(0) from p, by observing the position rj(t + 1) and using the knowledge of 
the size of d. Therefore at t + 1, the robots in S have discovered and agreed on their initial 
distribution. The case when additional robots become visible to the robots in S during this 

operation can be handled easily, as we did in the previous subsection. We omit the details. 
The following theorem follows from the discussion given above. We omit the proof. 

Theorem 3 The agreement problem on the initial distribution is solvable for synchronous 

robots under limited visibility. D 

6     Conclusion 

We discussed formation and agreement problems for autonomous, synchronous robots with 
limited visibility. The algorithm we presented for the single point formation problem is 

oblivious, in the sense that the position of robot r,- at time t+ 1 is determined only from the 

positions of other robots that r,- observes at t. One might wonder whether the same problem 
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can still be solved by an oblivions algorithm when the robots are asynchronous (i.e., when 
the robots are not guaranteed to move simultaneously all the time), but unfortunately, it 
has been shown in [14] that no oblivious algorithm exists for the single point formation 
problem for asynchronous robots, even if the robots have unlimited visibility. On the other 
hand, a nonoblivious algorithm for the single point formation problem has been reported 
for asynchronous robots with unlimited visibility in [14]. It is an interesting open problem 
to determine whether or not the same problem can be solved by a nonoblivious algorithm 
for asynchronous robots with limited visibility. Furthermore, it is not known exactly what 
class of geometric figures can be formed by synchronous robots under limited visibility. (A 
point is an example of such a figure.) Some results in this direction have been reported 
in [14] for synchronous robots with unlimited visibility. Investigation of this problem for 
robots with limited visibility is suggested for future research. 

As for the agreement problems we discussed, our results show that the limitation on the 
visibility of the robots has no effect on whether or not they are solvable, with, of course, a 
minor qualification that under limited visibility, not all the robots may be able to agree on 
the given concept. However, under limited visibility, the robots must first get sufficiently 
close to each other (for example, they move to a single point), before reaching an agreement. 
In many cases, this is not necessary if the robots have unlimited visibility. So the limitation 
on the visibility tends to increase the complexity of the algorithms. One challenging open 
problem regarding agreement is to decide whether or not asynchronous robots with limited 
visibility can discover and agree on their initial distribution. We suggest this problem for 
future research. 
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